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Abstract: How to explain the emergence of cooperative behavior remains a significant problem.
As players may hold diverse perceptions on a particular dilemma, the concept of multigames has
been introduced. Therefore, a multigame is studied within various binary networks. Since group
structures are common in human society and a person can participate in multiple groups, this
paper studies an evolutionary multigame with high-order interaction properties. For this purpose, a
uniform random hypergraph is adopted as the network structure, allowing players to interact with
all nodes in the same hyperedge. First, we investigate the effect of the multigame payoff matrix
differences on the evolution of cooperation and find that increasing the differences in the payoff
matrix promotes cooperation on the hypergraph network. Second, we discover that an increase in
the average hyperdegree of the hypergraph network promotes network reciprocity, wherein high-
hyperdegree nodes influence surrounding nodes to form a cooperator cluster. Conversely, groups
with a low hyperdegree are more susceptible to betrayal, leading to a decline in cooperation.
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1. Introduction

According to the theory of evolution, living organisms evolve through the process of
natural selection, which is based on the concept of “survival of the fittest” [1]. This struggle
for survival can lead to personal selfishness, or egoism. However, cooperative behavior has
been widely observed in both animal and human societies. Therefore, understanding the
origin of cooperative behavior in these societies has been a challenge in the fields of biology
and sociology. Exploring the mechanisms that foster the development and diffusion of
cooperative behavior is a long-standing and stimulating topic in the natural and social
sciences [2-6].

Maynard Smith and Price proposed the concepts of evolutionary games and evo-
lutionary stable strategies, known as evolutionary game theory, inspired by biological
evolution [7]. Evolutionary game theory, based on the concept of limited rationality, pro-
vides a powerful framework for exploring cooperative behavior, and it has been widely
considered as a theory for solving puzzles, especially social dilemmas [8,9]. In social
dilemmas, such as the prisoner’s dilemma and the snowdrift game, defection is the best
strategy for the individual, while cooperation is the best strategy for achieving the highest
social welfare [1]. Consequently, the social dilemma captures the essence of the problem.
This theory has spurred a large body of research on the mechanisms that shape coop-
erative behavior, including teaching activity [10,11], memory [12-14], reputation [15,16],
reward [17,18], and punishment [19,20].
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Influenced by various environments and cultures, different participants may perceive
a particular dilemma differently. As a response, scholars have explored the use of multi-
game environments to represent these scenarios more accurately. These environments
allow for the use of different payoff matrices by different players. Wang et al. [21] were
among the first researchers to investigate evolutionary multigames within structured popu-
lations. They observed that participants on a square lattice network could utilize different
payoff matrices, such as the prisoner’s dilemma and the snowdrift game, and discovered
that heterogeneity in the payoff enhances the network’s reciprocation, leading to the de-
velopment of cooperation. Since then, several studies based on multigames have been
proposed. For example, Chowdhury et al. [22] introduced the punishment mechanism in a
multigame and found that cooperative behavior can be promoted by reducing the payoff of
the defector. Deng et al. [23] studied multigames over interdependent networks and found
that diversity in sucker payoffs and biases in the utility function can promote cooperation
on each network to some extent. Additionally, many other mechanisms in the domain of
multigames have been proposed, such as learning costs [24], memory [25], mutation [26],
desire-driven behavior [27], perturbations payoff [28], and others [29-31].

Many studies on multigames rely on classical networks with binary interactions
between players. However, in reality, groups are prevalent structures, as individuals fre-
quently interact in groups and can participate in multiple groups. These characteristics
enable higher-order interactions between multiple individuals beyond traditional binary
interactions. Hypergraphs with higher-order interactions are better suited for modeling
such interactions, however, until now, to the best of our knowledge, there has been no
research to study the evolution of cooperation in the domain of multigames based on
hypergraph networks, which makes this a meaningful study. In fact, some scholars have
already conducted research on evolutionary games based on higher-order interaction net-
works [32-36]. For instance, Alvarez et al. [37] demonstrated that the public goods game on
hypergraphs is entirely consistent with the replication dynamics in the mixed limit. They
also explored the synergy factors in collective risk games over higher-order interaction net-
works [38]. In this paper, we investigate the impact of higher-order interaction networks on
cooperative behavior in multigames by using a uniform random hypergraph as the network
structure. To accommodate group interactions in the game mode, we extend the interaction
mode of multigames, enabling players to interact with all group members and calculate
their payoffs. Our study employs different payoff matrices, namely, the widely studied
prisoner’s dilemma and snowdrift game, to represent players with different perception
mechanisms. To model the strategy update mechanism, we utilize the Fermi function [39].

The paper is organized into several sections. Section 2 outlines our model, which
considers the hypergraph’s network structure and evolutionary multigame. In Section 3,
we present a comprehensive analysis of our simulation results, including differences
in multigame matrices and changes in network structure. Finally, Section 4 provides a
conclusion to the article.

2. Model

This section provides a detailed introduction of our model, comprising two main
parts: the hypergraph structure and the evolutionary multigame model. We explain the
key features of the evolutionary multigame model, including the payoff matrix, payoff
function, and strategy update mechanism.

2.1. Hypergraph Structure

Hypergraphs are a type of graph that goes beyond typical binary interactions, as they
permit the representation of intricate structures and relationships. Unlike traditional graphs,
which exclusively connect two nodes with an edge, hypergraphs link several vertices
with a hyperedge. Consequently, hypergraphs employ hyperlinks to join multiple nodes,
allowing for more adaptable and nuanced connections between them. In other words,
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hypergraphs offer a more versatile approach to portraying relationships and interactions in
complex systems.

Hypergraphs were first introduced by Berge [40] as a means of representing complex
structures and relationships. They are defined as a set of nodes and hyperedges denoted as
H = (V,L). Nodes in the hypergraph are represented as V = {v1,vy,...,vn}, while hyper-
edges, which represent connections between nodes, are represented as L = {ly,15,...,I}.
A hyperedge, also called a hyperlink, contains ¢ nodes in V, forming a g — order group.
g represents the number of nodes in the specific hyperedge. Nodes that are connected
by the same hyperedge are considered adjacent. Moreover, if two hyperedges share at
least one node, they are considered adjacent as well. k‘lg indicates the number of hyper-
links that contain ¢ nodes among the hyperlinks in which node i participates. Thus, the
hyperdegree of node i is k; = Zg;’r; klg , where g,,i;, and gax represent the hyperedges with
the minimum and maximum order of node i, respectively. In our study, we utilized the
uniform random hypergraph (URH) as the network structure. The URH structure preserves
the high-order interaction properties of hypergraphs while simplifying our modeling and
network description process. The subsequent sections will clarify the definition of the URH
and its generation.

Uniform random hypergraph: G-order uniform random hypergraphs differ from
general hypergraphs in that each hyperedge contains a fixed number of G nodes, G is
the order of the URH, and the generation of hyperedges is random, with each hyperedge
having an equal probability of being selected. To generate the URH, we utilized Wang’s
proposed method [41], which involves constructing a tree structure for selecting nodes
and generating a random number to determine a hyperedge. This method is flexible as it
considers all node combinations and has high computational efficiency. Figure 1 shows
a schematic diagram of a G = 3 URH, indicating that each hyperlink in the hypergraph
contains 3 nodes.

o©
@ ®

o ©
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Figure 1. A uniform random hypergraph for G = 3. In this graph, the colored circles denote
hyperedges in the hypergraph, while the dots and numbers represent nodes and their assigned
numbers, respectively.

2.2. Evolutionary Multigames

Payoff matrix: In a network, players are provided with a set of strategies, denoted
by s, that includes two options: cooperation (C) and defection (D). At the start of the
evolution, players are equally likely to select any of the options. As the evolution proceeds,
these players participate in games based on their chosen strategies. If both players opt for
cooperation, they both receive a reward, denoted by R. Conversely, if both players choose
to defect, they both receive punishment, represented as P. In the case where a cooperator
interacts with a defector, the defector gets a temptation payoff of T, while the cooperator
receives a sucker’s payoff of S.

The perspectives of individual players can vary significantly when faced with a
dilemma. Therefore, we offer two distinct game mechanisms to players: the prisoner’s
dilemma (PD) and the snowdrift dilemma (SD). These two game paradigms are well-
established and have been extensively researched by experts in the field. We assigned
different S values to each mechanism to reflect players’ distinct perceptions, allowing us to
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study the effects of these differences on strategic decision making and cooperation within
the network.

The prisoner’s dilemma is a well-known model that illustrates the challenges of coop-
erative behavior. It shows that cooperative individuals may face the risk of exploitation,
while defectors may have a selective advantage. The game involves two players who must
make simultaneous decisions about whether to cooperate or defect. If one player cooperates
while the other defects, the defector receives the highest payoff of T while the cooperator
experiences a negative payoff of —S. The payoffs follow the ranking of T > R > P > S.
The game’s consequences suggest that defection is an evolutionarily stable strategy, which
often leads to a severe social dilemma. The snowdrift game is a biologically intriguing alter-
native to the conventional prisoner’s dilemma. The critical distinguishing factor between
these games lies in the sequence of payoffs, with the snowdrift game featuring a hierarchy
of T > R > § > P. This reversal of payoffs has substantial implications for determining
the best strategy, which should differ from the opponent’s strategy. Consequently, it may
allow for prolonged cooperation. Therefore, the snowdrift game is a valuable instrument
for investigating moderate social dilemmas.

This paper defines the parameters for the prisoner’s dilemma game (PDG) and snow-
drift dilemma game (SDG) as follows: R =1, T = b > 1, and P = 0. The value of S is
determined by the specific game, with S = —6 in the PDG and S = 6 in the SDG. The range
of @ is set as [0, 1], with R and P being fixed parameters, and b and 6 being free parameters.
Thus, the payoff matrix for players in the SDG and PDG can be expressed as follows:

PD = Ll? _ﬂ SD = B g] )

Payoff function: To simulate evolutionary dynamics in our model, we use Monte
Carlo simulations. During a paired game interaction, each player plays a game with every
player in each hyperlink where they exist, based on their perception mechanism. Afterward,
the resulting payoffs are aggregated and averaged to obtain the normalized payoff P; for
each player.

N
(s-Dk; [5i 1—si] x Mj x [1 —]s]]
ki

P = : )

j=1

P; denotes the payoff of player i, and M; represents their payoff matrix. j refers to
player i’s neighboring player, with s; and s; representing their respective strategies. Addi-
tionally, k; refers to the hyperdegree of player i, which indicates the number of hyperlinks.
Strategy update mechanism: During the evolution process, rational players often
adopt the strategy of their higher-earning neighbors, with a certain probability, to increase
their own payoffs. If neighbor j has a different strategy from player i, the probability of
player i adopting the strategy of neighbor j can be determined using the Fermi function [39]:

1

1+exp(—x*)

®)

In this context, P; and P; denote the current payoff of players i and j, respectively,
while K represents the noise factor that reflects the level of irrationality exhibited by
individuals when updating their information. As K approaches zero, individuals become
more rational and tend to learn from high-earning groups. Typically, a K value of 0.1 is
used in research [24,39,41,42], allowing for meaningful comparisons and contributing to a
better understanding of the phenomenon.

Algorithm 1 summarizes the Monte Carlo process used to model the interactions of
the entire evolutionary multigame system.
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Algorithm 1 Monte Carlo simulation

1 Build a hypergraph;
2 initialization; // It includes player’s strategy s ,perceptions v, payoff
P

3 for each time step € [1,STEPS] do

4 | Randomly select node i;

5 for each player y in i's neighbors do

6 ‘ Record y’s choice;

7 end

8 | Calculate P;;// P; is based on (2)

9 Randomly select node j in i'neighbors;
10 for each player y in j’s neighbors do

1 | Record y’s choice;
12 end
13 | Calculate P;;// P; is based on (2)
14 Random a number P between 0 and 1;
15 | if W(s; = s;) < Pthen// W(s; — s;) is based on (3)
16 ‘ Sets; = s;
17 end
18 end

3. Results and Discussion

This study reports the outcomes of 200,000 Monte Carlo simulations on a hypergraph
comprising 5000 nodes. In the game’s initial stage, players are divided equally between
two perception types, PD and SD. They randomly choose to cooperate or defect with
equal probabilities. The settings of these nodes and the number of iterations guarantee the
convergence and stability of the final outcome. Our analysis of the empirical findings has
two objectives. Firstly, we investigate the influence of multigame matrix differences on the
evolution of cooperation. Secondly, we examine the effect of variations in the hypergraph
structure on the evolution of cooperation. We provide relevant illustrations to support our
findings at the microscopic level.

3.1. The Impact of Multigame Matrix Differences on the Evolution of Cooperation in Hypergraphs

The players are divided into two groups, with half playing PD games and the other
half playing SD games. The strength of each game is determined by the difference in
the multigame payoff matrix. More specifically, the parameter 8 in the multigame model
distinguishes between PD and SD players. When 6 equals zero, the game is weak and
the players are homogeneous. However, as 6 increases, the population structure tends
towards heterogeneity. As a result, this study aims to analyze the impact of 6 on the
evolution of cooperation in hypergraph networks. To illustrate this impact, we create a
plot presenting the relationship between 6 and the proportion of cooperators in Figure 2.
In Figure 2a,b, we demonstrate multigames played on G = 3 and G = 7 hypergraph
networks, respectively, with b = 1.2 (defector’s temptation payoff). Our analysis of Figure 2
yields the following results.

Figure 2 illustrates the outcomes of an evolutionary multigame played on a hyper-
graph. The results show that a higher value of 8 leads to an increase in cooperative behavior
among both SD and PD players, resulting in a higher fraction of cooperators. Notably,
although increasing ¢ decreases the payoff for the PD sucker, it also leads to an increase
in the fraction of cooperators among all PD players. The results indicate that increasing
the heterogeneity of the multigame environment is associated with greater effectiveness in
fostering cooperation.
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Figure 2. How the parameter 6 affects the fraction of cooperators (fc). The parameter 6 represents

the difference in the payoff matrix of two players with different perceptions. The horizontal axis

represents 6, while the vertical axis displays the fraction of cooperators. Three curves are plotted,

corresponding to PD players, SD players, and all players. The data is presented for two hypergraphs:

G =3 and G = 7, which are shown in (a,b). The parameter G represents the order of the hypergraph.

Figure 2a,b demonstrate that the observed phenomena hold true for hypergraph
network structures with G = 3 and G = 7. These findings suggest that the impact of
the parameter 0 on the evolutionary multigame is consistent across various hypergraph
networks, with our experiments on multiple hypergraphs demonstrating the robustness of
our results. Furthermore, our study indicates that the effects of 6 on square lattice networks,
as documented in Wang's paper [21], hold true for hypergraph networks as well.

3.2. The Impact of Network Structure on the Evolution of Cooperation in Hypergraphs
3.2.1. The Influence of G and L on the Fraction of Cooperators

In the previous section, it was established that a heterogeneous multigame environ-
ment on a hypergraph can encourage cooperation. This section focuses on investigating the
impact of the hypergraph network structure on cooperation evolution. Specifically, in the
URH, the parameters G and L define the hypergraph network structure. G denotes the
number of nodes in each hyperlink, and L represents the total number of hyperlinks in
the hypergraph. Our study explores the effects of various hypergraphs with different G
and L values on the fraction of cooperators. The experimental outcomes are illustrated in
Figure 3.

25,000

22,500

20,000 4

17,500 4

15,000 4

12,500 4

10,000 4

7,500

5,000

2,500
2

Figure 3. The heatmap illustrates the observed fraction of cooperation in the G-L parameter space
of the hypergraph. The color intensity in the graph corresponds to the fraction of cooperators,
with darker shades indicating higher values of fc. These results are obtained under the conditions
of b = 1.2 and 6 = 0.4. The parameter b represents the temptation payoff of the defector, and 60
represents the difference in the payoff matrix of two players with different perceptions.
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Figure 3 illustrates the impact of G and L on the fraction of cooperators in an evolu-
tionary multigame. Varying combinations of G-L parameters result in hypergraphs with
diverse structures when the number of nodes remains constant. By increasing either G
or L in a monotonic manner, the hyperedge can accommodate more nodes or generate
additional hyperedges, thereby increasing the average hyperdegree of hypergraph. The col-
ors in the heatmap correspond to the fraction of cooperators in the steady state. It can
be observed that increasing either G or L of the hypergraph also increases the fraction of
cooperators (fc). The upper right corner of the figure, represented by the dark red area,
signifies the highest values of G and L, which correspond to the highest fraction of cooper-
ators. Conversely, the lower left corner, represented by the dark blue area, indicates the
lowest values of G and L, associated with the lowest fraction of cooperators. These findings
indicate that modifying the hypergraph structure can significantly influence the outcome
of an evolutionary multigame. Consequently, this motivates us to delve deeper into the
correlation between the hyperdegree and the fraction of cooperators. The subsequent
section will elaborate on the relationship between the hyperdegree and cooperation, as well
as investigating the impact of the hyperdegree on cooperation.

3.2.2. Exploring the Impact of Hyperdegree on the Evolution of Cooperation

In the previous section, it was observed that when modifying the network structure of
the hypergraph by increasing the average hyperdegree, the final proportion of cooperators
increased. To gain further insight into how changes in the hyperdegree influence the
collective behavior of nodes, we calculated the cooperator ratios of nodes with varying
hyperdegrees, as depicted in Figure 4a. The hyperedges in the hypergraph were randomly
selected, and the hyperdegree distribution of the nodes is illustrated in Figure 4b, showing
a Poisson-like distribution.

30 ~ =
- G=7 . /.—._../,l--_/ w0l & \ - G=7
. T T \,
. =
05 7
o - X
/ o0 3 \u-—
A 4/‘ \A \,
gl 17 Ew Vo
h /'/// £ -/I\\ w
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Fl 400 / '\A \«\
ol FI / \ \
i X
{/ MRS -
! / \ \
| A .. .
! N, =
021§ 0 - o3 I

4 6 8 10 12

Hyperdegree

(a) The fc of different hyperdegree nodes

10.0 125 15.0 175

) Hyperdegree

(b) Hyperdegree distributions in different hypergraphs

Figure 4. The depicted figure illustrates the fraction of cooperators among nodes with distinct
hyperdegrees. The x-axis denotes the hyperdegree, while the y-axis indicates the fc for nodes with
that hyperdegree. The results of the three hypergraphs ( G = 3,5,7 ) are illustrated by three distinct
curves, which uncover the correlation between node hyperdegree and cooperative behavior. Different
values of G represent hypergraphs with different orders.

Figure 4a illustrates that in the evolution of cooperation, nodes with high hyperdegree
exhibit a greater propensity for cooperation compared to those with low hyperdegree. Since
high-hyperdegree nodes can connect multiple hyperedges, their behaviors can significantly
affect the selection of neighboring nodes. Hence, our next objective is to measure and
evaluate the influence of these nodes on their surrounding nodes.

The influence is defined as the probability of the node’s neighbors imitating its strategy
within a specific time frame, calculated as the ratio of successful imitation counts to the total
number of imitations attempted. The nodes are then ranked based on their hyperdegree,
and two categories are created: high-hyperdegree groups and low-hyperdegree groups,
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each comprising 20% of the nodes with the highest and lowest hyperdegrees, respectively.

The influence of these two groups is quantified and illustrated in Figure 5.

influence
L ]

influence

o
z
L)

02

step

10°

0.0

10°

10°
step

(a) Low hyperdegree nodes (b) High hyperdegree nodes

Figure 5. How node influence changes over time for both low-hyperdegree and high-hyperdegree
groups, represented by (a,b), respectively. Two curves, each with a different color, show the influence
of defectors and cooperators within the group. The horizontal axis represents time t, while the
vertical axis represents influence, which indicates the probability of neighboring nodes adopting the
group’s strategy.

Based on the results depicted in Figure 5, we calculated the average influence of
node groups that employed diverse strategies. Specifically, in the low-hyperdegree-node
group (a), cooperators exhibit an influence of 34%, whereas defectors exhibit an influence
of 82%. In contrast, in the high-hyperdegree-node group (b), cooperators demonstrate an
influence of 45%, while defectors show an influence of 43%. These findings indicate that
defectors exert significantly stronger influence than cooperators in low-hyperdegree nodes,
whereas cooperators have a slightly greater impact than defectors in high-hyperdegree
nodes. High-hyperdegree nodes, which serve as hub nodes connecting multiple hyper-
edges, exert a greater influence on their neighboring nodes. As a result, cooperative
behavior in these high-hyperdegree nodes is more likely to be emulated by their neighbors,
leading to the formation of a cooperator cluster centered on the hub nodes. These results
highlight the crucial role that high-hyperdegree nodes play in promoting the development
of cooperation.

Overall, the aforementioned studies exhibit the variation in the evolution of coopera-
tion depending on the node’s hyperdegree. During the evolution process on hypergraphs,
nodes with a higher hyperdegree exhibit a greater tendency to cooperate and subsequently
influence neighboring nodes to adopt cooperative actions, leading to the creation of coopera-
tive clusters with these high-hyperdegree nodes at the center. Conversely, low-hyperdegree
nodes are more prone to imitating defection behavior, thereby causing the group to succumb
to the pitfall of defection.

3.2.3. Microcosmic Analysis of Node Evolution with Varied Hyperdegrees

In the preceding section, it was discovered that nodes with high hyperdegree demon-
strate a greater inclination towards cooperation, and their cooperative behavior is more
readily emulated by adjacent nodes. To clarify this pattern, we gathered evolutionary data
from node clusters exhibiting various hyperdegrees. Through this process, we derived
general evolutionary principles and expounded on the underlying mechanisms from a
microscopic perspective.

Firstly, this paragraph presents how cooperation among nodes with high hyperdegree
evolves over time, as shown in Figure 6. The diagram illustrates how high hyperdegree
facilitates cooperation. Initially, when defectors increase, the payoff of most nodes decreases.
However, a small group of cooperators within the same group, particularly those using
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SD perception, can still earn a high payoff and influence their neighboring nodes. This
results in a trustworthy cluster of cooperators that prevents the spread of betrayal. This
cluster is then linked to other clusters through hyperedges to disseminate information
about cooperative behavior.

@ defector

@ cooperator

Figure 6. An abstract evolution process, highlighting the co-evolutionary relationship among high-
hyperdegree nodes. The colored dots represent nodes within the network, while the black circles
signify hyperedges.

Secondly, we will demonstrate the evolution of a low-hyperdegree group falling into
the defection pitfall through a schematic diagram, as shown in Figure 7. In groups with
low-hyperdegree nodes, defect behaviors tend to be prevalent, making the formation of
cooperative clusters challenging. Low-hyperdegree nodes can maintain a high income as
long as a small number of cooperators are present in the hyperedges, which explains this
evolutionary difference. In contrast, high-hyperdegree nodes require a significant num-
ber of cooperators in all hyperedges to maintain the same normalized payoff. Therefore,
defectors face greater difficulty in surviving in high-hyperdegree nodes. Additionally,
the absence of connections to outgroups in low-hyperdegree nodes makes obtaining infor-
mation on cooperative behavior challenging, leading to an evolutionary trap if there is a
completed defection.

@ defector
@ cooperator

Qe o

Figure 7. The abstract evolution of low-hyperdegree nodes in a network, with colored dots represent-

ing the nodes and black circles representing hyperedges. The arrows indicate possible pathways of
evolution. Fork generation groups face an evolutionary pitfall, as they are all defectors and cannot
access cooperative information.

4. Conclusions

This study investigates an evolutionary multigame over networks with higher-order
interactions from two perspectives: multigame payoff matrix difference and network struc-
ture. Firstly, we modify the parameter 6 to affect the difference of the multigame payoff
matrix. Specifically, when 0 is set to 0, the population structure is homogeneous. As 6
increases, the population structure tends to become more heterogeneous, with two types of
people in society becoming more extreme: those who tend to cooperate more (SD players)
and those who are more selfish (PD players). An increase in 6 boosts the SD cooperators,
leading to an asymmetric imitation level [21]. By improving the cooperative behavior of
SD players, PD players imitate and learn their behavior, ultimately improving the overall
level of network reciprocity. Secondly, we investigate the impact of modifying the network
structure of the hypergraph on cooperation evolution. Our findings demonstrate that
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raising the average hyperdegree of hypergraph networks can boost cooperation among
participants in a network, fostering cooperative behavior. Furthermore, our studies reveal
that nodes with high hyperdegree are more likely to choose cooperation during the evo-
lution of cooperation, leading to the creation of cooperative clusters for greater rewards.
These high-hyperdegree nodes serve as network hubs, with the ability to organize multiple
groups. High-hyperdegree nodes correspond to large companies that have significant enter-
prise scale and industry influence with high anti-risk capability. These top companies are
more inclined to increase their overall revenue by enhancing their innovation capabilities
and engaging in multi-party convergent cooperation. Conversely, low-hyperdegree nodes
correspond to small-scale companies and organizations with weak risk management ability,
and their choices are predominantly cautious and imitative.

Our study emphasizes the significance of enhancing group connectivity to address
social dilemmas and create cooperative clusters in high-order interaction populations.
This paper aims to stimulate further investigations into multigames on hypergraphs and
examine approaches that promote cooperative behavior under emerging interaction types.
In the future, more complex hypergraph network structures can be employed to delve
deeper into the game theory of higher-order interactions.
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